
RSA Algorithm 

Ken Wais 10/6/11 

The RSA algorithm is a numerical method in cryptology to encrypt 

private keys for PKI digital signing.  As such it utilizes some of the 

principles of algebraic sets and their relations. I will try to explain in 

plain terms how one key is created. 

The Modulus 

First we must understand the modulus to grasp RSA. The modulus is a 

way to relate number sets to each other using a base number to map one 

set to another. An example should illustrate the idea. 

The simplest example would be 1 = 3 mod 2.  What this means is if we 

only have two numbers, we count with 0 and 1 to represent larger 

numbers we must put them in terms of 0 or 1. So, 3 is just going 1 

beyond 2.  What would 4 be? 4 would be just 2 twice so, it would be 0 

again.  How ‘bout 5? 5 would be 2 twice and then 1 more so it would 

be 1.  How bout 6?  6 would be 2 three times so it would be 0.  Now 

let’s put these examples together and show them below: 

1 = 3 mod 2 

0 = 4 mod 2 



1 = 5 mod 2 

0 = 6 mod 2 

1 = 7 mod 2 

0 = 8 mod 2 

1 = 9 mod 2 

Notice on the left side every time we increase the base 10 number it just 

keeps going between 0 and 1.  That’s because the only numbers we can 

use in base 2 are 0 and 1.  If the base is 10 we can use 0 to 9 different 

numbers (0,1,2,3,4,5,6,7,8,9), and beyond that we could map small 

numbers to larger ones using the modulus again.  As an example of a 

base 10 modulus we can make the base 12, and then every number we 

count will have to be a multiple of 12.  This is what the 12 hour clock 

does.  Again an example will illustrate this. 

Midnight is 0 = 12 mod 12 

1 o’clock is 1 = 13 mod 12 

2 o’clock is 2 = 14 mod 12 

3 o’clock is 3 = 15 mod 12 



Here is a strange one. 1 =1/4 mod 5. 

This equation is not integer division. It means if we divide 5/4 the 

remainder is 1.  Mods are always integers.  So one fourth of 5 is 1. You 

drop anything after the division.  This is important because RSA uses a 

fraction in its algorithm.  If this isn’t clear now, when I give an actual 

numerical example below it should be. 

The RSA Algorithm 

First you choose two prime number p and q.   

Then compute n=pq 

Next form the factored function  

F(x) = (p-1)(q-1).  So far it’s quite simple. 

Next things get a little more complex. Now we have to choose an 

exponent e such that the following is true: 

1 < e < gcd (greatest common denominator)(e, p-1) =1  

and 



1< e < gcd (greatest common denominator)(e, q-1) =1 

Actually the inequality is 1< e < gcd F(x) =1, but this means it has to 

be true for each factored term of the F(x). 

This means that e, (p-1), and (q-1) can have only one common 

denominator and that is 1. It is not important to know why p and q must 

have only common denominator to use RSA.  It involves aspects of 

algebraic sets I won’t discuss here.  Just know they have to have this 

property. What this means is the two numbers p and q are co-prime.  

That is the have no factor between them, except 1.   

There is a way to determine if the two numbers have only 1 as common 

denominator. It’s called Euclid’s algorithm.  You take the two primes 

and divide them repeatedly until you get down to 1 as the remainder.  If 

you don’t get 1 as a remainder in this process then the two primes don’t 

have 1 as their gcd.  Here is an example with a table that shows how it 

works. On the top we have the dividend (the number to be divided), the 

divisor, the quotient and the remainder.  We divide the two numbers 

across and move the divisor to the second row and repeat the process 

until we get 1 in a row.  If we get 1, then the two numbers have only 1 

as their GCD.  We will use 140 and 21 

 

Divid

end 

Divi

sor 

Quoti

ent 

Remai

nder 

140 21 6 14 



21 6 3 3 

6 3 2 0 

3 2 1 1 

In the first row we have 140/21 =6 (w/o the remainder). 6*21 =126-140 

= 14 (remainder) 

Moving the 21 to the 2nd row we have 21/6 =3 (w/o the remainder) 3*6 

=18-21=3 (remainder) 

Moving 6 to the 2nd row we have 6/3 = 2 and 0 remainder. 

We repeat again and finally we get 1 as a remainder. This means 140, 

21 have one gcd = 1 

Now if we apply this procedure to two prime numbers we will quickly 

see they have only one gcd and it’s 1.  So, here is an example I found 

on the Net, (I was going to manually go thru several primes, so I looked 

up a numerical example of RSA. They are p=137 and q=131. Let’s do 

it’s Euclid table 



137/131 = 1.0458. Drop the non-integer remainder and the only GCD 

they share is 1, so they are good primes to use. Now we are ready to 

compute the private key and the public key using RSA. 

So, we go back to the above equations 

P=137, Q=131 

N = PQ = 137*131 =17947 

F(x) =(137-1)(131-1) = (136)(130) =17680 

Now we select prime e = 3. If we check GCD(3,136) = 1 it is.  Look at 

the above equation to see why I plugged in that number 

And GCD(3, 130) = 1 it is. 

Now the hardest part comes Here, we form the modulus called d. It is 

D =mod F(x)/e = mod 17680/3 = 11787.  Now I must explain how this 

comes out like that. Alternately this is written D =3-1 mod F(x) = mod 

17680/3 = 11787 

The integer division 17680/3 = 5893.  But remember this is not simple 

integer division.  If we take 5893*3= 17679.  17680-17679 = 1.  



Remember that is what (p-1) and (q-1) must equal, namely 1. So the 

modulus is saying take 5893, times and minus 17679 and it equals 1. 

So, now we have everything to form our public key which is (n,e) and 

private key is (n,d).  

The public key is the pair (17947, 3) and the private key is (17947, 

11787).  That would be the digital signature of the first sender.  Notice 

11787 is prime and hard to guess, that is why it’s the private key.  Of 

course in a real RSA algorithm, the prime numbers p and q would be 

about 125 digits long.  But notice the public key is PQ and could be a 

non-prime number (it isn’t in this case). But knowing that will never let 

you know the D, because D is the mod of two prime numbers, each 

minus 1 and only share a gcd of 1.  That gets near impossible guess by 

brute force (trying combinations) the larger the prime numbers p and q 

and the exponent e becomes.  To get the receiver’s public and private 

key pair you reverse the process, but I won’t go into that.  

􀀀 


