Strange Palindromic Number Sets
6/30/2021
Robleh Wais
The Idea
An idea to be investigated formally is specified below concerning palindromic integer number strings.
Download the source file for this study here Palindromic Tabulations
If a set has an N-tuple seed, that is constructed in such a way as to create a palindromic string, then that string can be operated upon by a binary set relation like addition. If the palindromic string is operated upon by addition does that operation create another palindrome? It does, however the difference between the initial palindromic string and the output palindromic string is that the original string may be palindromic in ordinality only, not cardinality. The output string is always palindromic in both order and value. For example, take the 5-tuple palindromic string 19,20,21,20,19, with the seed= 19,20,21. Its relational map is shown below:
19 |
20 |
21 |
20 |
19 |
99 |
Please note, the 5 well-ordered integers before they are summed, are palindromic in ordinal reference only. The output map in the last column is a cardinal palindromic string.
These set mappings are random and do occur as an N-tuple seed of a palindromic string in well-formed order grows.
Starting at 1 10,000 for a 5-tuple set of palindromic strings mapped via the binary operation of addition and using the palindromic number string generator A B C B A, there are 80.
See below for the results:
A |
B |
C |
B |
A |
SUM |
1 |
2 |
3 |
2 |
1 |
9 |
19 |
20 |
21 |
20 |
19 |
99 |
84 |
85 |
86 |
85 |
84 |
424 |
90 |
91 |
92 |
91 |
90 |
454 |
96 |
97 |
98 |
97 |
96 |
484 |
183 |
184 |
185 |
184 |
183 |
919 |
189 |
190 |
191 |
190 |
189 |
949 |
195 |
196 |
197 |
196 |
195 |
979 |
822 |
823 |
824 |
823 |
822 |
4114 |
888 |
889 |
890 |
889 |
888 |
4444 |
954 |
955 |
956 |
955 |
954 |
4774 |
1845 |
1846 |
1847 |
1846 |
1845 |
9229 |
1911 |
1912 |
1913 |
1912 |
1911 |
9559 |
1977 |
1978 |
1979 |
1978 |
1977 |
9889 |
8040 |
8041 |
8042 |
8041 |
8040 |
40204 |
8100 |
8101 |
8102 |
8101 |
8100 |
40504 |
8160 |
8161 |
8162 |
8161 |
8160 |
40804 |
8202 |
8203 |
8204 |
8203 |
8202 |
41014 |
8262 |
8263 |
8264 |
8263 |
8262 |
41314 |
8322 |
8323 |
8324 |
8323 |
8322 |
41614 |
8382 |
8383 |
8384 |
8383 |
8382 |
41914 |
8424 |
8425 |
8426 |
8425 |
8424 |
42124 |
8484 |
8485 |
8486 |
8485 |
8484 |
42424 |
8544 |
8545 |
8546 |
8545 |
8544 |
42724 |
8646 |
8647 |
8648 |
8647 |
8646 |
43234 |
8706 |
8707 |
8708 |
8707 |
8706 |
43534 |
8766 |
8767 |
8768 |
8767 |
8766 |
43834 |
8808 |
8809 |
8810 |
8809 |
8808 |
44044 |
8868 |
8869 |
8870 |
8869 |
8868 |
44344 |
8928 |
8929 |
8930 |
8929 |
8928 |
44644 |
8988 |
8989 |
8990 |
8989 |
8988 |
44944 |
9030 |
9031 |
9032 |
9031 |
9030 |
45154 |
9090 |
9091 |
9092 |
9091 |
9090 |
45454 |
9150 |
9151 |
9152 |
9151 |
9150 |
45754 |
9252 |
9253 |
9254 |
9253 |
9252 |
46264 |
9312 |
9313 |
9314 |
9313 |
9312 |
46564 |
9372 |
9373 |
9374 |
9373 |
9372 |
46864 |
9414 |
9415 |
9416 |
9415 |
9414 |
47074 |
9474 |
9475 |
9476 |
9475 |
9474 |
47374 |
9534 |
9535 |
9536 |
9535 |
9534 |
47674 |
9594 |
9595 |
9596 |
9595 |
9594 |
47974 |
9636 |
9637 |
9638 |
9637 |
9636 |
48184 |
9696 |
9697 |
9698 |
9697 |
9696 |
48484 |
9756 |
9757 |
9758 |
9757 |
9756 |
48784 |
9858 |
9859 |
9860 |
9859 |
9858 |
49294 |
9918 |
9919 |
9920 |
9919 |
9918 |
49594 |
9978 |
9979 |
9980 |
9979 |
9978 |
49894 |
18021 |
18022 |
18023 |
18022 |
18021 |
90109 |
18081 |
18082 |
18083 |
18082 |
18081 |
90409 |
18141 |
18142 |
18143 |
18142 |
18141 |
90709 |
18243 |
18244 |
18245 |
18244 |
18243 |
91219 |
18303 |
18304 |
18305 |
18304 |
18303 |
91519 |
18363 |
18364 |
18365 |
18364 |
18363 |
91819 |
18405 |
18406 |
18407 |
18406 |
18405 |
92029 |
18465 |
18466 |
18467 |
18466 |
18465 |
92329 |
18525 |
18526 |
18527 |
18526 |
18525 |
92629 |
18585 |
18586 |
18587 |
18586 |
18585 |
92929 |
18627 |
18628 |
18629 |
18628 |
18627 |
93139 |
18687 |
18688 |
18689 |
18688 |
18687 |
93439 |
18747 |
18748 |
18749 |
18748 |
18747 |
93739 |
18849 |
18850 |
18851 |
18850 |
18849 |
94249 |
18909 |
18910 |
18911 |
18910 |
18909 |
94549 |
18969 |
18970 |
18971 |
18970 |
18969 |
94849 |
19011 |
19012 |
19013 |
19012 |
19011 |
95059 |
19071 |
19072 |
19073 |
19072 |
19071 |
95359 |
19131 |
19132 |
19133 |
19132 |
19131 |
95659 |
19191 |
19192 |
19193 |
19192 |
19191 |
95959 |
19233 |
19234 |
19235 |
19234 |
19233 |
96169 |
19293 |
19294 |
19295 |
19294 |
19293 |
96469 |
19353 |
19354 |
19355 |
19354 |
19353 |
96769 |
19455 |
19456 |
19457 |
19456 |
19455 |
97279 |
19515 |
19516 |
19517 |
19516 |
19515 |
97579 |
19575 |
19576 |
19577 |
19576 |
19575 |
97879 |
19617 |
19618 |
19619 |
19618 |
19617 |
98089 |
19677 |
19678 |
19679 |
19678 |
19677 |
98389 |
19737 |
19738 |
19739 |
19738 |
19737 |
98689 |
19797 |
19798 |
19799 |
19798 |
19797 |
98989 |
19839 |
19840 |
19841 |
19840 |
19839 |
99199 |
19899 |
19900 |
19901 |
19900 |
19899 |
99499 |
19959 |
19960 |
19961 |
19960 |
19959 |
99799 |
That's not very many. Approximately .008 of the numbers mapped. If the mappings of palindromic sets are extended via addition the rarity is remarkable. From 200,006 additions of palindromic ordinal numbers created by a 3-tuple seed (A,B, C) of palindromes of the form A B C B A, there are only 146 palindromic cardinal strings
What becomes odder is if we take the differences in the occurrences of these cardinal palindromic number strings. There are questions we can ask. Are they cyclical? Would the differentials be palindromic? It seems based on the paucity cited above, that palindromes most likely don't occur after the 100,000 3-tuple palindromic set.
A few observations should be made concerning these number sets. Though they have been generated by an algorithmic method, their output sets are not predictable with the usual deductive method of inquiry in set theory mathematics. That is to say, we can t derive results that apply to these numbers infinitely. These numbers sets are most accessible via methods of computation suitable to software programs like Excel. No formal deductions can be extracted about them from set theory proper.